생활코딩

Coding Everybody

코스 전체목록

닫기

네번째 딥러닝 - 신경망의 완성:히든레이어

수업소개

히든레이어와 멀티레이어의 구조를 이해하고, 히든레이어를 추가한 멀티레이어 인공신경망 모델을 완성해 봅니다. 

강의 

 

멀티레이어 신경망

 

실습 

 

소스코드

colab |  backend.ai

보스턴 집값 예측

##########################
# 라이브러리 사용
import tensorflow as tf
import pandas as pd

###########################
# 1.과거의 데이터를 준비합니다.
파일경로 = 'https://raw.githubusercontent.com/blackdew/tensorflow1/master/csv/boston.csv'
보스턴 = pd.read_csv(파일경로)

# 종속변수, 독립변수
독립 = 보스턴[['crim', 'zn', 'indus', 'chas', 'nox', 
            'rm', 'age', 'dis', 'rad', 'tax',
            'ptratio', 'b', 'lstat']]
종속 = 보스턴[['medv']]
print(독립.shape, 종속.shape)

###########################
# 2. 모델의 구조를 만듭니다
X = tf.keras.layers.Input(shape=[13])
H = tf.keras.layers.Dense(10, activation='swish')(X)
Y = tf.keras.layers.Dense(1)(H)
model = tf.keras.models.Model(X, Y)
model.compile(loss='mse')

# 모델 구조 확인
model.summary()

###########################
# 3.데이터로 모델을 학습(FIT)합니다.
model.fit(독립, 종속, epochs=100)

###########################
# 4. 모델을 이용합니다
print(model.predict(독립[:5]))
print(종속[:5])

###########################
# 모델의 수식 확인
print(model.get_weights())

아이리스 품종 분류

###########################
# 라이브러리 사용
import tensorflow as tf
import pandas as pd

###########################
# 1.과거의 데이터를 준비합니다.
파일경로 = 'https://raw.githubusercontent.com/blackdew/tensorflow1/master/csv/iris.csv'
아이리스 = pd.read_csv(파일경로)

# 원핫인코딩
아이리스 = pd.get_dummies(아이리스)

# 종속변수, 독립변수
독립 = 아이리스[['꽃잎길이', '꽃잎폭', '꽃받침길이', '꽃받침폭']]
종속 = 아이리스[['품종_setosa', '품종_versicolor', '품종_virginica']]
print(독립.shape, 종속.shape)

###########################
# 2. 모델의 구조를 만듭니다
X = tf.keras.layers.Input(shape=[4])
H = tf.keras.layers.Dense(8, activation="swish")(X)
H = tf.keras.layers.Dense(8, activation="swish")(H)
H = tf.keras.layers.Dense(8, activation="swish")(H)
Y = tf.keras.layers.Dense(3, activation='softmax')(H)
model = tf.keras.models.Model(X, Y)
model.compile(loss='categorical_crossentropy',
              metrics='accuracy')

# 모델 구조 확인
model.summary()

###########################
# 3.데이터로 모델을 학습(FIT)합니다.
model.fit(독립, 종속, epochs=100)

###########################
# 4. 모델을 이용합니다
print(model.predict(독립[:5]))
print(종속[:5])

 

댓글

댓글 본문
버전 관리
이선비
현재 버전
선택 버전
graphittie 자세히 보기